目录
- 1. 数据准备
- 2. 方法一: 差值计算
- 3. 方法二: lead或lag函数
1. 数据准备
-- 数据准备
WITH user_active_info AS (
SELECT * FROM (
VALUES ('10001' , '2023-02-01'),('10001' , '2023-02-03')
,('10001' , '2023-02-04'),('10001' , '2023-02-05')
,('10002' , '2023-02-02'),('10002' , '2023-02-03')
,('10002' , '2023-02-04'),('10002' , '2023-02-05')
,('10002' , '2023-02-07'),('10003' , '2023-02-02')
,('10003' , '2023-02-03'),('10003' , '2023-02-04')
,('10003' , '2023-02-05'),('10003' , '2023-02-06')
,('10003' , '2023-02-07'),('10003' , '2023-02-08')
,('10004' , '2023-02-03'),('10004' , '2023-02-04')
,('10004' , '2023-02-06'),('10004' , '2023-02-07')
,('10004' , '2023-02-08'),('10004' , '2023-02-08')
,('10005' , '2023-02-02'),('10005' , '2023-02-05')
) AS user_active_info(user_id, active_date)
)
2. 方法一: 差值计算
-- 1. 对用户数据进行分组,按照活跃日期进行排序(去重:防止有一天有多次活跃记录)
SELECT
user_id
, active_date
, ROW_NUMBER() OVER(PARTITION BY user_id ORDER BY active_date) AS rn
FROM user_active_info
GROUP BY user_id , active_date
;
user_id |
active_date |
rn |
10001 |
2023-02-01 |
1 |
10001 |
2023-02-03 |
2 |
10001 |
2023-02-04 |
3 |
10001 |
2023-02-05 |
4 |
10002 |
2023-02-02 |
1 |
10002 |
2023-02-03 |
2 |
10002 |
2023-02-04 |
3 |
10002 |
2023-02-05 |
4 |
10002 |
2023-02-07 |
5 |
… |
… |
… |
-- 2. 使用活跃日期和排序rn进行差值计算,得到的日期如果是相等的,就说明活跃日期是连续的
SELECT
user_id
, active_date
, rn
, DATE_SUB(active_date,rn) AS sub_date
FROM (
SELECT
user_id
, active_date
, ROW_NUMBER() OVER(PARTITION BY user_id ORDER BY active_date) AS rn
FROM user_active_info
GROUP BY user_id , active_date
) a
;
user_id |
active_date |
rn |
sub_date |
10001 |
2023-02-01 |
1 |
2023-01-31 |
10001 |
2023-02-03 |
2 |
2023-02-01 |
10001 |
2023-02-04 |
3 |
2023-02-01 |
10001 |
2023-02-05 |
4 |
2023-02-01 |
10002 |
2023-02-02 |
1 |
2023-02-01 |
10002 |
2023-02-03 |
2 |
2023-02-01 |
10002 |
2023-02-04 |
3 |
2023-02-01 |
10002 |
2023-02-05 |
4 |
2023-02-01 |
10002 |
2023-02-07 |
5 |
2023-02-02 |
… |
… |
… |
… |
-- 3. 按照user_id和sub_date 进行分组求和,筛选出连续登陆天数大于3天的用户
SELECT
user_id
, MIN(active_date) AS begin_date
, MAX(active_date) AS end_date
, COUNT (1) AS login_duration
FROM (
SELECT
user_id
, active_date
, rn
, DATE_SUB(active_date,rn) AS sub_date
FROM (
SELECT
user_id
, active_date
, ROW_NUMBER() OVER(PARTITION BY user_id ORDER BY active_date) AS rn
FROM user_active_info
GROUP BY user_id , active_date
) a
) b
GROUP BY user_id , sub_date
HAVING login_duration >= 3
;
user_id |
begin_date |
end_date |
login_duration |
10001 |
2023-02-03 |
2023-02-05 |
3 |
10002 |
2023-02-02 |
2023-02-05 |
4 |
10003 |
2023-02-02 |
2023-02-08 |
7 |
10004 |
2023-02-06 |
2023-02-08 |
3 |
3. 方法二: lead或lag函数
-- 1. 将active_date 上抬2行,不存在默认为'0'(计算连续活跃3天以上的, 上抬2行,n天上抬n-1行)(去重:防止有一天有多次活跃记录)
SELECT
user_id
, active_date
, lead(active_date , 2 , 0) OVER(PARTITION BY user_id ORDER BY active_date) AS lead_active_date
FROM user_active_info
GROUP BY user_id , active_date
user_id |
active_date |
lead_active_date |
10001 |
2023-02-01 |
2023-02-04 |
10001 |
2023-02-03 |
2023-02-05 |
10001 |
2023-02-04 |
0 |
10001 |
2023-02-05 |
0 |
10002 |
2023-02-02 |
2023-02-04 |
10002 |
2023-02-03 |
2023-02-05 |
10002 |
2023-02-04 |
2023-02-07 |
10002 |
2023-02-05 |
0 |
10002 |
2023-02-07 |
0 |
… |
… |
… |
-- 2. 过滤筛选出, lead_active_date 与 active_date 差值为2的, 差值2 -> 连续活跃了3天
SELECT
user_id , active_date , lead_active_date
FROM (
SELECT
user_id
, active_date
, lead(active_date , 2 , 0) OVER(PARTITION BY user_id ORDER BY active_date) AS lead_active_date
FROM user_active_info
GROUP BY user_id , active_date
) a
WHERE lead_active_date != '0'
AND DATEDIFF(lead_active_date , active_date) = 2
user_id |
active_date |
lead_active_date |
10001 |
2023-02-03 |
2023-02-05 |
10002 |
2023-02-02 |
2023-02-04 |
10002 |
2023-02-03 |
2023-02-05 |
… |
… |
… |
-- 3. user_id 去重, 得到连续活跃天数>=3天的用户
SELECT
user_id
FROM (
SELECT
user_id , active_date , lead_active_date
FROM (
SELECT
user_id
, active_date
, lead(active_date , 2 , 0) OVER(PARTITION BY user_id ORDER BY active_date) AS lead_active_date
FROM user_active_info
GROUP BY user_id , active_date
) a
WHERE lead_active_date != '0'
AND DATEDIFF(lead_active_date , active_date) = 2
) b
GROUP BY user_id
user_id |
10001 |
10002 |
10003 |
10004 |
到此这篇关于SQL统计连续登陆3天用户的实现示例的文章就介绍到这了,更多相关SQL统计连续登陆3天用户内容请搜索插件窝以前的文章或继续浏览下面的相关文章希望大家以后多多支持插件窝!