# 更新系统
sudo apt update && sudo apt upgrade -y
# 安装开发工具
sudo apt install -y build-essential cmake git wget unzip
# 配置交换空间(如需要)
sudo fallocate -l 4G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
echo '/swapfile none swap sw 0 0' | sudo tee -a /etc/fstab
# 添加官方NVIDIA驱动PPA
sudo add-apt-repository ppa:graphics-drivers/ppa -y
sudo apt update
# 安装驱动(根据显卡型号选择合适版本)
sudo apt install -y nvidia-driver-525 nvidia-settings
# 安装CUDA Toolkit (版本根据需求选择)
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-ubuntu2204.pin
sudo mv cuda-ubuntu2204.pin /etc/apt/preferences.d/cuda-repository-pin-600
sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/3bf863cc.pub
sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/ /"
sudo apt update
sudo apt install -y cuda
# 安装cuDNN (需从NVIDIA官网下载)
# 安装OpenCL运行时
sudo apt install -y intel-opencl-icd
# 安装VAAPI驱动
sudo apt install -y i965-va-driver
对于严格的实时性要求,可安装RT(Real-Time)内核:
# Ubuntu安装RT内核
sudo apt install linux-image-rt linux-headers-rt
# 调整内核参数
echo "kernel.sched_rt_runtime_us = 950000" | sudo tee -a /etc/sysctl.conf
echo "vm.swappiness = 10" | sudo tee -a /etc/sysctl.conf
sudo sysctl -p
# 安装依赖
sudo apt install -y libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev
sudo apt install -y libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libdc1394-22-dev
# 从源码编译OpenCV(推荐)
git clone https://github.com/opencv/opencv.git
git clone https://github.com/opencv/opencv_contrib.git
mkdir -p opencv/build && cd opencv/build
cmake -D CMAKE_BUILD_TYPE=RELEASE \
-D CMAKE_INSTALL_PREFIX=/usr/local \
-D INSTALL_C_EXAMPLES=ON \
-D INSTALL_PYTHON_EXAMPLES=ON \
-D OPENCV_GENERATE_PKGCONFIG=ON \
-D OPENCV_EXTRA_MODULES_PATH=../../opencv_contrib/modules \
-D BUILD_EXAMPLES=ON \
-D WITH_CUDA=ON \
-D CUDA_ARCH_BIN="5.3 6.2 7.2" \
-D CUDA_ARCH_PTX="" \
-D WITH_CUDNN=ON \
-D OPENCV_DNN_CUDA=ON \
-D ENABLE_FAST_MATH=1 \
-D CUDA_FAST_MATH=1 \
-D WITH_CUBLAS=1 \
-D WITH_NVCUVID=ON \
-D WITH_QT=ON \
-D WITH_OPENGL=ON ..
make -j$(nproc)
sudo make install
sudo ldconfig
# 安装Miniconda
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh
# 创建虚拟环境
conda create -n cv python=3.8
conda activate cv
# 安装常用CV库
pip install numpy scipy matplotlib jupyter notebook
pip install opencv-contrib-python
pip install scikit-image scikit-learn
pip install tensorflow-gpu torch torchvision torchaudio
sudo apt install -y libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev \
libgstreamer-plugins-good1.0-dev libgstreamer-plugins-bad1.0-dev \
gstreamer1.0-plugins-base gstreamer1.0-plugins-good \
gstreamer1.0-plugins-bad gstreamer1.0-plugins-ugly \
gstreamer1.0-libav gstreamer1.0-tools \
gstreamer1.0-x gstreamer1.0-alsa gstreamer1.0-gl \
gstreamer1.0-gtk3 gstreamer1.0-qt5 gstreamer1.0-pulseaudio
sudo apt install -y ffmpeg
# 提高文件描述符限制
echo "* soft nofile 65535" | sudo tee -a /etc/security/limits.conf
echo "* hard nofile 65535" | sudo tee -a /etc/security/limits.conf
# 禁用不必要的服务
sudo systemctl disable bluetooth.service
sudo systemctl disable avahi-daemon.service
# 调整CPU频率策略
sudo apt install -y cpufrequtils
echo 'GOVERNOR="performance"' | sudo tee /etc/default/cpufrequtils
sudo systemctl restart cpufrequtils
# 调整透明大页设置(对某些工作负载有益)
echo "never" | sudo tee /sys/kernel/mm/transparent_hugepage/enabled
# 安装常用调试工具
sudo apt install -y gdb valgrind strace ltrace
# 安装Docker
sudo apt install -y docker.io
sudo systemctl enable --now docker
sudo usermod -aG docker $USER
# 拉取预配置的CV容器
docker pull nvcr.io/nvidia/l4t-ml:r35.1.0-py3
# Python验证脚本
import cv2
print(f"OpenCV版本: {cv2.__version__}")
print(f"可用CUDA: {cv2.cuda.getCudaEnabledDeviceCount() > 0}")
import torch
print(f"PyTorch版本: {torch.__version__}")
print(f"CUDA可用: {torch.cuda.is_available()}")
通过以上配置,您的Linux系统将具备强大的实时图像处理和计算机视觉开发能力,能够支持从基础图像处理到深度学习模型训练的各种应用场景。