错误的原因在于
y1 = 0.5*x*2-1.2*x y2 = x**3
没有放到循环里面,没有随着 x 的优化而相应变化。
import torch import numpy as np import torch.optim as optim torch.autograd.set_detect_anomaly(True) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') x = torch.tensor([1.0, 2.0, 3.0,4.5], dtype=torch.float32, requires_grad=True, device=device) y_GT= torch.tensor([10, -20, -30,45], dtype=torch.float32, device=device) print(f'x{x}') optimizer = optim.Adam([x], lr=1) y1 = 0.5*x*2-1.2*x y2 = x**3 for i in range(10): print(f'{i}: x{x}') optimizer.zero_grad() loss = (y1+y2-y_GT).mean() loss.backward() optimizer.step() print(f'{i}: x{x}')
import torch import numpy as np import torch.optim as optim torch.autograd.set_detect_anomaly(True) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') x = torch.tensor([1.0, 2.0, 3.0,4.5], dtype=torch.float32, requires_grad=True, device=device) y_GT= torch.tensor([10, -20, -30,45], dtype=torch.float32, device=device) print(f'x{x}') optimizer = optim.Adam([x], lr=1) for i in range(10): print(f'{i}: x{x}') optimizer.zero_grad() y1 = 0.5*x*2-1.2*x y2 = x**3 loss = (y1+y2-y_GT).mean() loss.backward() optimizer.step() print(f'{i}: x{x}')
以上为个人经验,希望对您有所帮助。