插件窝 干货文章 Python绘制饼图、圆环图的实例

Python绘制饼图、圆环图的实例

td data 品牌 销量 919    来源:    2024-10-17

Python绘制饼图、圆环图

下面是我们作图需要使用到的数据(数据是个人虚构的、不代表各品牌真实销售数据) 

品牌 子品牌 销量 总销量/台
比亚迪 10000 29000
比亚迪 9000 29000
比亚迪 6000 29000
比亚迪 海豚 4000 29000
特斯拉 Model3 8000 17500
特斯拉 ModelS 6000 17500
特斯拉 ModelY 3500 17500
大众 朗逸 3000 12000
大众 速腾 3000 12000
大众 高尔夫 6000 12000
丰田 卡罗拉 6000 12000
丰田 雷凌 4000 12000
丰田 凯美瑞 2000 12000
奇瑞 艾瑞泽5 1000 2000
奇瑞 艾瑞泽8 1000 2000
领克 领克01 1000 1000

1.各品牌的销售数量饼图

import  pandas as pd
from matplotlib import pyplot as plt
 
#解决中文乱码
plt.rcParams['font.sans-serif'] = ['SimHei']
 
data=pd.read_excel(r'汽车销量数据数据.xlsx',sheet_name='Sheet1')
 
#根据各品牌去重
 
data_total_sale=data.loc[:,["品牌","总销量"]].drop_duplicates()
print(data_total_sale)
out:
 
    品牌    总销量
0   比亚迪  29000
4   特斯拉  17500
7    大众  12000
10   丰田  12000
13   奇瑞   2000
15   领克   1000
 
fig, ax = plt.subplots(figsize=(null, 7))
ax.pie(data_total_sale['总销量'],labels=data_total_sale['品牌'],autopct='%1.1f%%')
plt.show()

2.各品牌销售数据圆环图

import  pandas as pd
from matplotlib import pyplot as plt
 
#解决中文乱码
plt.rcParams['font.sans-serif'] = ['SimHei']
 
data=pd.read_excel(r'汽车销量数据数据.xlsx',sheet_name='Sheet1')
 
#根据各品牌去重
 
data_total_sale=data.loc[:,["品牌","总销量"]].drop_duplicates()
 
total_sale=data_total_sale['总销量'].sum()
 
fig, ax = plt.subplots(figsize=(null, 7))
 
ax.pie(data_total_sale['总销量'], radius=1.5, wedgeprops={'width': 0.7}, labels = data_total_sale['品牌'], autopct='%3.2f%%',  pctdistance=0.75)  #保留2位小数
plt.text(null, 0, total_sale, ha='center', va='center', fontsize=28)
plt.show()

3.将数据少的合并为其它

import  pandas as pd
from matplotlib import pyplot as plt
 
#解决中文乱码
plt.rcParams['font.sans-serif'] = ['SimHei']
 
data=pd.read_excel(r'汽车销量数据数据.xlsx',sheet_name='Sheet1')
 
#根据各品牌去重
 
data_total_sale=data.loc[:,["品牌","总销量"]].drop_duplicates()
 
others=["奇瑞","领克"]
data_new=data_total_sale.loc[~data['品牌'].isin(others)]
other_sum=data_total_sale['总销量'].loc[data['品牌'].isin(others)].sum()
data_new=data_new.append({"品牌":'其它',"总销量":other_sum},ignore_index=True)
fig, ax = plt.subplots(figsize=(null, 7))
ax.pie(data_new['总销量'],labels=data_new['品牌'],autopct='%1.1f%%')
plt.show()

4.其它类中展开

import  pandas as pd
from matplotlib import pyplot as plt
from matplotlib.patches import ConnectionPatch
from matplotlib import cm
 
#解决中文乱码
plt.rcParams['font.sans-serif'] = ['SimHei']
 
data=pd.read_excel(r'汽车销量数据数据.xlsx',sheet_name='Sheet1')
 
#根据各品牌去重
 
data_total_sale=data.loc[:,["品牌","总销量"]].drop_duplicates()
 
others=["奇瑞","领克"]
data_new=data_total_sale.loc[~data['品牌'].isin(others)]
other_sum=data_total_sale['总销量'].loc[data['品牌'].isin(others)].sum()
data_new=data_new.append({"品牌":'其它',"总销量":other_sum},ignore_index=True)
data_other=data_total_sale.loc[data['品牌'].isin(others)]
fig = plt.figure(figsize=(null,4))
ax1 = fig.add_subplot(null,2,1)
ax1.pie(data_new['总销量'],labels=data_new['品牌'],autopct='%1.1f%%')
ax2 = fig.add_subplot(null,2,2)
ax2.pie(data_other['总销量'],labels=data_other['品牌'],autopct='%1.1f%%',radius=0.5,wedgeprops=dict(width=0.3, edgecolor='w'))
 
theta1, theta2 = ax1.patches[-1].theta1+15, ax1.patches[-1].theta2-15
center, r = ax1.patches[-1].center,ax1.patches[-1].r
x = r*np.cos(np.pi/180*theta1)+center[0]
y = np.sin(np.pi/180*theta1)+center[1]
con1 = ConnectionPatch(xyA=(null, 0.5),xyB=(x,y),
                     coordsA=ax2.transData, coordsB=ax1.transData,axesA=ax2,axesB=ax1)
 
x = r * np.cos(np.pi / 180 * theta2) + center[0]
y = np.sin(np.pi / 180 * theta2) + center[1]
con2 = ConnectionPatch(xyA=(-0.1, -0.49),
                       xyB=(x, y),
                       coordsA=ax2.transData,
                       coordsB=ax1.transData,
                       axesA=ax2, axesB=ax1)
for con in [con1, con2]:
    con.set_color('gray')
    ax2.add_artist(con)
    con.set_linewidth(1)
fig.subplots_adjust(wspace=0)
plt.show()

总结

以上为个人经验,希望对您有所帮助。