处理1亿个URL访问效率低下的问题可以从多个方面进行优化,包括数据结构、算法、并发处理、缓存机制和分布式系统等。以下是一些具体的优化策略:
import concurrent.futures
import requests
def fetch_url(url):
try:
response = requests.get(url)
return url, response.status_code
except requests.RequestException as e:
return url, str(e)
urls = ["http://example.com/page1", "http://example.com/page2", ...] # 1亿个URL
with concurrent.futures.ThreadPoolExecutor(max_workers=100) as executor:
future_to_url = {executor.submit(fetch_url, url): url for url in urls}
for future in concurrent.futures.as_completed(future_to_url):
url = future_to_url[future]
try:
data = future.result()
print(f"URL: {data[0]}, Status: {data[1]}")
except Exception as exc:
print(f"URL: {url} generated an exception: {exc}")
通过结合高效的数据结构、分布式处理、并发处理、缓存机制和数据库优化等多种策略,可以显著提高处理1亿个URL的效率。具体的优化方案需要根据实际的应用场景和系统架构进行调整和选择。