sudo apt update && sudo apt upgrade -y
sudo apt install -y build-essential cmake git wget unzip
sudo apt install -y pkg-config libgtk-3-dev
sudo apt install -y python3-dev python3-pip python3-venv
sudo apt install -y libjpeg-dev libpng-dev libtiff-dev
sudo apt install -y libavcodec-dev libavformat-dev libswscale-dev libv4l-dev
sudo apt install -y libxvidcore-dev libx264-dev
sudo apt install -y libopencv-dev python3-opencv
# 安装依赖
sudo apt install -y cmake git libgtk2.0-dev pkg-config libavcodec-dev \
libavformat-dev libswscale-dev python3-dev python3-numpy \
libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libdc1394-22-dev
# 下载OpenCV
mkdir ~/opencv_build && cd ~/opencv_build
git clone https://github.com/opencv/opencv.git
git clone https://github.com/opencv/opencv_contrib.git
# 编译安装
cd opencv
mkdir build && cd build
cmake -D CMAKE_BUILD_TYPE=RELEASE \
-D CMAKE_INSTALL_PREFIX=/usr/local \
-D INSTALL_C_EXAMPLES=ON \
-D INSTALL_PYTHON_EXAMPLES=ON \
-D OPENCV_GENERATE_PKGCONFIG=ON \
-D OPENCV_EXTRA_MODULES_PATH=~/opencv_build/opencv_contrib/modules \
-D BUILD_EXAMPLES=ON ..
make -j$(nproc)
sudo make install
# PIL/Pillow
pip3 install --upgrade pillow
# scikit-image
pip3 install scikit-image
# SimpleITK (医学图像处理)
pip3 install SimpleITK
# VTK (3D可视化)
sudo apt install -y vtk7
pip3 install vtk
# 使用pip安装(推荐)
pip3 install torch torchvision torchaudio
# 或者指定CUDA版本(如有NVIDIA GPU)
pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113
# CPU版本
pip3 install tensorflow
# GPU版本(需要CUDA支持)
pip3 install tensorflow-gpu
# Keras
pip3 install keras
# MXNet
pip3 install mxnet
# Caffe (需要从源码编译)
sudo apt install -y libprotobuf-dev libleveldb-dev libsnappy-dev \
libopencv-dev libhdf5-serial-dev protobuf-compiler
git clone https://github.com/BVLC/caffe.git
cd caffe
pip3 install -r python/requirements.txt
mkdir build && cd build
cmake ..
make -j$(nproc)
make install
# 检查推荐驱动
ubuntu-drivers devices
# 安装推荐驱动
sudo ubuntu-drivers autoinstall
# 重启后验证
nvidia-smi
# 从NVIDIA官网下载对应版本的CUDA Toolkit
# 例如CUDA 11.3
wget https://developer.download.nvidia.com/compute/cuda/11.3.0/local_installers/cuda_11.3.0_465.19.01_linux.run
sudo sh cuda_11.3.0_465.19.01_linux.run
# 添加环境变量
echo 'export PATH=/usr/local/cuda/bin:$PATH' >> ~/.bashrc
echo 'export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc
source ~/.bashrc
从NVIDIA开发者网站下载对应CUDA版本的cuDNN并按照官方指南安装。
pip3 install jupyterlab
# 如果需要使用虚拟环境
pip3 install ipykernel
python3 -m ipykernel install --user --name=myenv
# 创建虚拟环境
python3 -m venv cv_env
source cv_env/bin/activate
# 在虚拟环境中安装包
pip3 install numpy opencv-python
# 退出虚拟环境
deactivate
import cv2
print(cv2.__version__)
img = cv2.imread('test.jpg', cv2.IMREAD_COLOR)
cv2.imshow('Test Image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
import torch
print(torch.__version__)
print(torch.cuda.is_available()) # 检查CUDA是否可用
import tensorflow as tf
print(tf.__version__)
print(tf.config.list_physical_devices('GPU')) # 检查GPU是否可用
# COCO API
pip3 install pycocotools
# TensorFlow Datasets
pip3 install tensorflow-datasets
# Torchvision Datasets
# 已包含在torchvision中
# 性能分析工具
sudo apt install -y linux-tools-common linux-tools-generic
pip3 install py-spy
# 内存分析
pip3 install memory_profiler
# GPU监控
pip3 install gpustat
nvidia-smi -l 1 # 实时监控GPU使用情况
sudo apt install -y docker.io
sudo systemctl enable --now docker
sudo usermod -aG docker $USER
distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
&& curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - \
&& curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
sudo apt update && sudo apt install -y nvidia-docker2
sudo systemctl restart docker
# OpenCV官方镜像
docker pull opencv/opencv
# PyTorch官方镜像
docker pull pytorch/pytorch
# TensorFlow官方镜像
docker pull tensorflow/tensorflow:latest-gpu
sudo apt install -y ffmpeg
# 查找缺失的库
ldd /path/to/your/executable | grep not
# 安装对应的开发包
sudo apt install -y lib<missing_library_name>-dev
建议使用虚拟环境隔离不同项目的依赖。
通过以上步骤,您应该已经配置好了一个功能完善的Linux图像处理与计算机视觉开发环境。根据具体项目需求,您可能需要安装额外的专用库或工具。