在开始配置前,请确保您的Linux系统满足以下最低要求: - 64位Linux发行版(Ubuntu 18.04+/CentOS 7+推荐) - 至少4GB RAM(8GB以上推荐) - 至少10GB可用磁盘空间 - 支持OpenGL 2.0的显卡
# 添加CRAN镜像源
sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys E298A3A825C0D65DFD57CBB651716619E084DAB9
sudo add-apt-repository 'deb https://cloud.r-project.org/bin/linux/ubuntu $(lsb_release -cs)-cran40/'
# 更新并安装R
sudo apt update
sudo apt install -y r-base r-base-dev
# 启用EPEL仓库
sudo yum install -y epel-release
# 安装R
sudo yum install -y R
# 对于Ubuntu/Debian
wget https://download1.rstudio.org/desktop/bionic/amd64/rstudio-2023.03.0-386-amd64.deb
sudo dpkg -i rstudio-*.deb
sudo apt-get install -f
# 对于CentOS/RHEL
wget https://download1.rstudio.org/desktop/centos7/x86_64/rstudio-2023.03.0-386-x86_64.rpm
sudo yum install -y rstudio-*.rpm
# Ubuntu/Debian
sudo apt install -y libcurl4-openssl-dev libssl-dev libxml2-dev libfontconfig1-dev libharfbuzz-dev libfribidi-dev libfreetype6-dev libpng-dev libtiff5-dev libjpeg-dev
# CentOS/RHEL
sudo yum install -y libcurl-devel openssl-devel libxml2-devel fontconfig-devel harfbuzz-devel fribidi-devel freetype-devel libpng-devel libtiff-devel libjpeg-turbo-devel
启动RStudio后,在R控制台执行:
# 设置CRAN镜像(可选)
options(repos = c(CRAN = "https://mirrors.tuna.tsinghua.edu.cn/CRAN/"))
# 安装基础机器学习包
install.packages(c(
"tidyverse", # 数据处理
"caret", # 分类和回归训练
"randomForest", # 随机森林
"xgboost", # XGBoost
"glmnet", # 正则化回归
"e1071", # SVM
"keras", # 深度学习接口
"tensorflow", # TensorFlow接口
"ranger", # 快速随机森林
"lightgbm", # LightGBM
"mlr3", # 机器学习框架
"tidymodels" # 整洁建模
))
# 验证TensorFlow安装
library(tensorflow)
install_tensorflow()
如果您有NVIDIA GPU并希望加速深度学习计算:
# 安装CUDA工具包(以Ubuntu为例)
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-ubuntu2004.pin
sudo mv cuda-ubuntu2004.pin /etc/apt/preferences.d/cuda-repository-pin-600
sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/7fa2af80.pub
sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/ /"
sudo apt-get update
sudo apt-get -y install cuda
然后在R中:
library(keras)
install_keras(tensorflow = "gpu")
创建一个新的R脚本并运行以下代码验证环境:
# 加载库
library(tidyverse)
library(caret)
# 创建简单模型
data(iris)
model <- train(Species ~ ., data = iris, method = "rf")
print(model)
# 测试深度学习
library(keras)
mnist <- dataset_mnist()
c(c(train_images, train_labels), c(test_images, test_labels)) %<-% mnist
echo $R_HOME
which R
install.packages("package", type = "source")
nvcc --version
tf$config$list_physical_devices('GPU')
renv
进行包版本管理targets
或drake
构建可重复分析流程plumber
将模型部署为API通过以上步骤,您已在Linux系统上成功配置了RStudio机器学习开发环境。现在可以开始构建和训练各种机器学习模型了。